# Possibilities for a Discharge Reduced

### Salt and Potash Production

**Experience from worldwide engineering activities of K-UTEC AG** 



**Exchange Conference on Potash** 

June 2013 | Geermu, China





### Content

- 1. European Legislation
- 2. Types of Crude Potash Salts
- 3. Processing and Residues
- 4. Residue Utilization Options
  - Recovery of Saleable Salts
  - Backfilling
- 5. Project Examples
- 6. Conclusion





# **European Legislation**

According to the actual European Legislation ....

- ... mineral deposits generally have to be used sustainably.
- ... aqueous systems have to achieve a good status until 2015.







# **Types of Crude Potash Salts**



-Chemical Composition







## **Processing and Residues**



## **Residue Utilization Options**

- Recovery of saleable salts
- Backfilling (water reduced and/or solidified by additives)
- Stockpiling according to the state of the art









### Recovery of Saleable Salts

-Treatment of the Liquid Wastes Resulting from Processing

**Crude Salt** 

**Liquid Wastes** 

**Products** 

SALT TYPE (ORE)

**PROCESS** 

**RECOVERED SALTS** 

Sylvinite:

**Evaporation**, Cooling

NaCl, KCl

Anhydritic Hard Salt:

Glaserite-Process, Cooling

K<sub>2</sub>SO<sub>4</sub>

**Kieseritic Hard Salt:** 

Schoenite-Process;

K<sub>2</sub>SO<sub>4</sub>

poss. separate MgCl<sub>2</sub>-Treatment

Carnallitite:

Carnallite-Process;

KCI

separate MgCl<sub>2</sub>-Treatment







## Recovery of Saleable Salts

-Options for MgCl<sub>2</sub>-Solution (End Bittern)







### **Backfilling**

#### -History and Effects

Since **1908**, hydraulic stowing for backfilling has been applied in the German Potash industry.

- Protection of the surface
- Optimized utilization of the resources
- Recycling of waste materials







### **Backfilling**

#### -Backfilling in Combination with Pillar Re-mining | Mine Bleicherode









# Backfilling









#### Realized Projects

Iberpotash | Spain: Production of common salt (NaCl) based on flotation tailings

Salinen Austria | Austria: SOP and NaCl production from purges of salt winning plant

Thangone | Lao: Purge free MOP production based on Carnallite solution mining

#### **Concepts**

GSES | Germany: Concept for a new Potash production in Sondershausen

Rossleben | Germany: Concept for a new Potash production in Rossleben

K+S | Germany: Proposal to avoid the discharge of waste brines











MASS

#### **Concept GSES | Germany**

**VOLUME** 

| Objective: | Production | of KCI |
|------------|------------|--------|
|------------|------------|--------|

| Ore: | Carnallitite with 10 % Hard Salt | 1.000.000 t/a | 525.000 m <sup>3</sup> /a |
|------|----------------------------------|---------------|---------------------------|

| Products: Kieserite | 135,000 t/a |
|---------------------|-------------|
|---------------------|-------------|

Anhydrite 16,000 t/a

KCI 137,000 t/a

NaCl (98 %) 350,000 t/a

 $MgCl_2$ -Solution (ca. 450 g/l  $MgCl_2$ ) 399,000 t/a



MgCl<sub>2</sub>-Solution for Backfilling 198,000 t/a 138,000 m<sup>3</sup>/a

 $d \sim 1.44 t/qm$ 







### Conclusion

- Avoiding of discharge of waste brines is possible.
- Minimizing of valuables loss is possible.
- Sustainable use of the desposit by backfilling is possible.

Each crude salt and each process need their specific way in order to find out the right answer.







